Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e27102, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38510026

RESUMO

One of the main source of demise during the next ten years will be coronary heart disease and stroke, which are brought on by smoking (nicotine). To identify the percentage (%) of nicotine consumption by electrocatalytic sensor towards nicotine for target-specific prevent stroke, four uninuclear Ni2+ complexes of substituted butanimidamide Schiff base ligands [H2L1-4] was prepared. All the complexes were thoroughly analyzed by using several spectroscopic techniques such as CHNS analysis, FT-IR, NMR (1H & 13C) UV-Vis and NMR. The analyses showed tetradentate binding mode of ligand around nickel(II) metal ion leads to the structure of square planar with N2X2 (X = O, S) donor fashion. In addition, the well-defined nickel(II) complexes were utilized for oxidation of various alcohols such as cyclohexanol, and benzyl alcohol were produced to the assorted oxidized products with high yield respectively using greener co-oxidant (molecular oxygen). In addition, Nickel(II) complexes was further utilized as catalyst for aryl-aryl coupling reaction via Suzuki-Mayura method to obtain biphenyl compound. Furthermore, nickel(II) complexes were exploited for electrochemical detection of nicotine sensing in µM concentration.

2.
J AOAC Int ; 106(5): 1138-1144, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37071694

RESUMO

BACKGROUND: Peramivir is a neuraminidase inhibitor that serves as a transition state analogue for influenza neuraminidase, inhibiting the formation of new viruses in infected cells, and has been approved for intravenous administration. OBJECTIVE: To validate an HPLC method used to identify the degraded products of the antiviral drug peramivir. METHODS: Herein, we report the identification of compounds formed after the degradation of peramivir through acid, alkali, peroxide, thermal, and photolytic degradation. At the level of toxicology, a technique was devised for the isolation and measurement of peramivir. RESULTS: A sensitive and reliable LC-tandem mass spectrometry technique for the quantitative measurement of Peramivir and its impurities was developed and verified in order to comply with the recommendations made by the International Council for Harmonisation (ICH). The proposed protocol was in the 50-750 µg/mL range. Relative Standard Deviation values of less than 2.0% indicated good recovery in the range of 98.36-102.57%. Within the studied range, the calibration curves demonstrated good linearity and, in addition, the fitting of correlation coefficient was more than 0.999 for every impurity. Quantitative analysis of contaminants revealed the high efficiency at a low level. CONCLUSION: Given its ability to separate degradation products, quantitative analysis is used to detect and quantify known and unknown impurities and degradants in the peramivir drug substance during routine analysis and stability studies. No significant degradation was found in peroxide and photolytic degradation studies. HIGHLIGHTS: An HPLC method was developed and put to the test in order to analyze the behavior of the impurities of peramivir as they degraded when subjected to the stress conditions suggested by the ICH. Peramivir was found to be stable under peroxide and photolysis conditions but not stable or degradable when exposed to the acid, base, and thermal stress conditions. The method developed was extremely precise, linear, accurate, robust, and rugged. As a result, this technology has the potential to be used in the medication production process for regular impurity analysis as well as for the stability analysis of peramivir.


Assuntos
Antivirais , Neuraminidase , Cromatografia Líquida de Alta Pressão/métodos , Peróxidos , Estabilidade de Medicamentos , Contaminação de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...